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Figure 1. HumanoidExo, a wearable exoskeleton system that transfers human motion to whole-body humanoid data. HumanoidExo
provides an efficient solution that bridges the embodiment gap between humans and robots, facilitating the collection of diverse datasets.
We tested it on three real-world tasks, and the results show that it helps humanoid robots generalize to new environments, learn complex
tasks from limited data, and acquire new skills like walking.

Abstract

A significant bottleneck in humanoid policy learning is
the acquisition of large-scale, diverse datasets, as collect-
ing reliable real-world data remains both difficult and cost-
prohibitive. To address this limitation, we introduce Hu-
manoidExo, a novel system that transfers human motion to
whole-body humanoid data. HumanoidExo offers a high-
efficiency solution that minimizes the embodiment gap be-
tween the human demonstrator and the robot, thereby tack-
ling the scarcity of whole-body humanoid data. By facilitat-
ing the collection of more voluminous and diverse datasets,
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our approach significantly enhances the performance of
humanoid robots in dynamic, real-world scenarios. We
evaluated our method across three challenging real-world
tasks: table-top manipulation, manipulation integrated with
stand-squat motions, and whole-body manipulation. Our
results empirically demonstrate that HumanoidExo is a cru-
cial addition to real-robot data, as it enables the humanoid
policy to generalize to novel environments, learn complex
whole-body control from only five real-robot demonstra-
tions, and even acquire new skills (i.e., walking) solely from
HumanoidExo data.

https://humanoid-exo.github.io/


1. Introduction
Humanoid policy learning is a rapidly advancing field,
now spanning locomotion, manipulation, and language-
conditioned tasking. This progress is largely propelled
by foundational model initiatives for general-purpose hu-
manoids, such as Nvidia’s GR00T[27] and Figure AI. To
mitigate the high cost of real-robot demonstrations, re-
searchers have introduced several data-efficient pipelines.
These include sim-to-real transfers, learning from web-
scale human videos (e.g., EgoMimic[19], Vid2Robot[16]),
and the development of diverse teleoperation systems for
more effective data collection.

Despite these efforts, scaling humanoid data collection
remains a significant challenge for two primary reasons.
First, simulation and human video data both suffer from
severe embodiment gaps. Simulated robot dynamics in-
evitably mismatch their real-world counterparts, while the
morphological and kinematic differences between humans
and robots make direct video-to-policy transfer notoriously
difficult. Second, direct teleoperation is difficult to scale.
This approach typically requires a one-to-one, human-to-
robot setup, which is expensive and resource-intensive. Fur-
thermore, the process is physically and mentally demand-
ing, leading to operator fatigue that limits the duration of
collection sessions and requires highly skilled personnel.
This reliance on expert operators and the inherent risk of
damaging costly hardware during live sessions create a ma-
jor bottleneck for generating large-scale datasets.

In this work, we introduce HumanoidExo, an integrated
system that advances both data collection and policy learn-
ing for humanoid robotics. We utilize a custom-designed,
lightweight, and flexible wearable exoskeleton[47] to cap-
ture human motion without impeding the operator’s natu-
ral movements. This design enables the comfortable per-
formance of diverse daily tasks, while our system records
and translates the operator’s actions into structured data for
robot learning. To capture comprehensive, whole-body mo-
tion, a back-mounted LiDAR sensor tracks the operator’s
torso, providing a 6D pose to record base movements such
as walking, squatting, and bending. By fusing data from
the exoskeleton and LiDAR, our system generates kinemat-
ically feasible, whole-body trajectories ready for large-scale
policy learning.

To leverage this data, we present HumanoidExo-VLA
(HE-VLA in short), a refined, vision-language-action
model for whole-body humanoid policy learning from ex-
oskeleton data. This hybrid approach uses imitation learn-
ing as a foundation and incorporates reinforcement learn-
ing to ensure the robot maintains balance and stability dur-
ing movement and manipulation. The synergy between our
hardware and software enables stable, efficient policy learn-
ing from exoskeleton data, leading to policies that are di-
rectly deployable on a physical humanoid robot.

To validate the effectiveness of our method, we con-
duct a comprehensive study across three challenging real-
world tasks. These tasks include table-top manipulation,
dexterous manipulation involving stand-squat motions, and
whole-body manipulation that requires walking to a table.
Our experimental results highlight the critical role of Hu-
manoidExo data in enhancing policy performance: 1) Gen-
eralization: It enables the learned policy to generalize ef-
fectively to novel scenes and environments. 2) Data Ef-
ficiency: It allows an end-to-end model to learn complex
tasks with as few as five real-robot demonstrations. 3) Skill
Acquisition: It empowers the humanoid robot to acquire
entirely new skills (e.g., walking) using only data from the
exoskeleton, without any real-robot demonstrations. We be-
lieve that HumanoidExo represents a significant step toward
achieving scalable whole-body humanoid policy learning.

2. Related Work
2.1. Data Collection with In-The-Wild Equipment

To enable scalable robot data collection, several in-the-wild
systems have recently been proposed to make the process
more affordable and accessible [1, 11, 19, 26, 39, 46]. These
systems have shown great promise in specific domains. For
instance, Human Policy [29] focuses on transferring human
action primitives to bridge embodiment differences. Dex-
Cap [32] uses a wearable glove to capture precise wrist and
fingertip poses for dexterous tasks. AirExo[9, 10] lever-
ages low-cost hardware with direct kinematic mapping for
arm manipulation. The Universal Manipulation Interface
(UMI) [6] introduced a simple handheld controller for col-
lecting bimanual data at scale, which DexUMI [36] later
extended to dexterous hands. However, these pioneering
works share two common limitations. First, they are pri-
marily designed for conventional robotic arms. Second,
their focus is typically restricted to upper-body manipula-
tion. In contrast, our work, HumanoidExo, addresses these
gaps directly. To the best of our knowledge, this is the first
system designed for in-the-wild, whole-body policy learn-
ing on a humanoid robot. We introduce multiple techniques
to bridge the embodiment gap between humans and hu-
manoids, effectively translating natural human motion into
executable robot policies. For the first time, we demonstrate
that this paradigm can successfully scale up the acquisition
of whole-body training data, paving the way for more capa-
ble and generalist humanoid robots.

2.2. Humanoid Whole-Body Manipulation

Reinforcement learning algorithms for whole-body lo-
comotion of humanoid robots have been extensively
studied[15, 30, 43, 44], and whole-body teleoperation of hu-
manoid robots can be achieved through various methods[2,
4, 12, 17, 22, 24, 31, 41]. In robotic manipulation, imi-



tation learning [5, 6, 14, 42, 45, 50] with rich visual rep-
resentations, especially from robot foundation models like
Vision-Language-Action (VLA) models [3, 7, 13, 21, 23,
25, 28, 33–35, 38, 48, 49], has become a central paradigm.
This line of work typically focuses on humanoid manipula-
tion [8]; for instance, iDP3 [40] trains egocentric 3D diffu-
sion policies, and Dexmimicgen [18] learns bimanual skills
via a sim-to-real strategy. These methods mainly rely on
teleoperated data collected directly from the physical hu-
manoid robot. In contrast, our approach, HumanoidExo,
focuses on learning humanoid control through a novel mix-
ture of limited real robot data and a larger dataset collected
from a human operator wearing an exoskeleton. More im-
portantly, our method is not confined to manipulation but
extends to complex whole-body control tasks such as stand-
ing, squatting, and walking.

3. Methodology
This section provides a comprehensive technical overview
of our proposed HumanoidExo system. We begin by elu-
cidating the foundational concept of our approach, which
is designed to bridge the significant embodiment gap be-
tween a human demonstrator and a humanoid robot. Then,
we detail the specific implementation for data acquisition,
breaking it down into our methodologies for capturing and
refining upper-body motion and for tracking lower-body dy-
namics. Subsequently, we describe the motion retargeting
pipeline that integrates these data streams and adjusts the
complete whole-body trajectories for effective robot data.
To conclude, we specify the hardware configuration of the
target humanoid platform used in our experiments.

3.1. Bridging the Embodiment Gap Between Hu-
man and Humanoid

One shortcoming that preventing scaling humanoid data
with exoskeleton or universal interface control is let in the
control mapping methods. Specifically, robot arm control
typically involves two primary methods: Cartesian space
control (end-effector control) and joint space control. For
devices such as the Meta Quest or Apple Vision Pro, which
are capable of capturing the end-effector pose, Cartesian
control is often an appropriate choice. However, in scenar-
ios where precise arm joint angles are required—such as
when placing clothes in a washing machine—solely track-
ing the end-effector pose without considering the other arm
joints can easily result in collisions with the environment.
Moreover, since a typical humanoid robot arm has seven
degrees of freedom (DoF), its inverse kinematics has mul-
tiple solutions, leading to a null space. End-effector con-
trol in such cases necessitates additional constraints, mak-
ing real-time and accurate joint angle computation partic-
ularly challenging in small, confined spaces. Therefore, it
is more practical to directly map the joint space, aligning

human joint movements with those of the robot.

3.2. Upper-Body Alignment between Human-
iodExo and Robot

HumanoidExo is specifically designed to read all seven
joints of the human arm. The rotational axes of its exoskele-
ton arm are precisely aligned with the corresponding axes
of the human joints, making the exoskeleton isomorphic
to the human arm. Additionally, we have introduced two
extra DoF at the Glenohumeral (GH) joint, enhancing the
system’s ergonomics and making it more suitable for daily
wear [20]. Due to these extra DoF and the incorporation
of a new link system, HumanoidExo’s joint configuration
differs significantly from that of a typical humanoid robot
arm. The motion retargeting algorithm used for this process
is outlined below.

Upper Arm Pose Alignment: The exoskeleton’s base
is used as the reference coordinate system, fixed to the
wearer’s torso. To align the upper arm pose, we first ex-
tract all rotational joints leading to the upper arm attach-
ment point. This includes both active joints driven by mo-
tors and passive joints within the linkages and timing belts.
By analyzing the relative positions of these joints, we con-
struct a Denavit-Hartenberg (DH) parameter table[47]. Us-
ing forward kinematics, we then compute the relative pose
between the upper arm attachment point and the base, ex-
pressed as a quaternion qupper arm. Subsequently, an it-
erative inverse kinematics method is employed to map the
upper arm’s pose onto the first three joints of the robot’s
arm, thereby achieving upper arm pose alignment.

Forearm Pose Alignment: The elbow is the only mov-
ing joint between the human upper arm and forearm. Hu-
manoidExo is equipped with a motor at the elbow, enabling
direct joint space control. This motor allows us to map the
human elbow’s bending angle directly to the robot’s fore-
arm, achieving forearm pose alignment.

Wrist Pose Alignment: The human wrist can be treated
as a spherical joint[51]. To simplify the structural design
and reduce the wrist’s weight while still enabling the ex-
oskeleton to capture wrist pose, we utilize Inertial Measure-
ment Units (IMUs) as the joint data source. To capture the
wrist’s three rotational DoF relative to the forearm, we place
one IMU on the forearm and another on the Dexmo force
feedback glove. First, we record the quaternions of the wrist
IMU, qw, and the forearm IMU, qf . Upon initializing the
exoskeleton, the operator returns the wrist to the home po-
sition. Now record both IMU readings at this time qw0 and
qf0 , The rotation quaternion qwrist representing the wrist’s
orientation relative to the forearm at any given moment:

qwrist = qtqt0 = qf ∗qwqw0∗qf0

where q∗ represents the conjugate of the quaternion. This
quaternion serves as the target pose for the wrist, and an



Right Wrist
Camera

Left Wrist 
Camera

Top Camera

Amovlab Allspark2-x86

Gigabit Ethernet Switch

Livox Mid-360

Battery

20
cm

36cm

20
cm

36cm

3DOF

1DOF

3DOF

Upper Arm Pose Alignment

Forearm Pose Alignment

Wrist Pose Alignment

HumanoidExo Humanoid

Top  Right WristLeft Wrist 

Visual Data Acquisition

Figure 2. Hardware overview for HumaniodExo. We integrated a Mid-360 LiDAR for acquiring exoskeleton motion odometry. For
visual information acquisition, we added two wrist cameras to capture new operational perspectives and enrich environmental perception.
These cameras, installed on the Dexmo force-feedback gloves, were mounted at angles identical to those of the robot’s cameras. Since
the HumanoidExo system adopts a joint space control method with angle remapping, we redesigned the exoskeleton’s key parameters to
match the arm length of the Unitree G1 robot. In addition, we recruited data collectors with upper-body dimensions similar to the G1’s
anthropometric parameters for data collection and teleoperation, minimizing end-effector errors arising from dimensional mismatches.

iterative inverse kinematics method is employed once more
to map this pose to the final three joints of the robot’s arm,
achieving wrist pose alignment.

3.3. Lower-Body Alignment between Human-
iodExo and Robot

For humans, lower-limb movements such as walking, squat-
ting, and standing are fundamental to daily activities, as
they directly determine mobility, flexibility, and the abil-
ity to interact with complex environments. Motivated by
this, our system adopts base translational velocity, base ro-
tational velocity, and height as the command for the RL-
based balance control algorithm. These variables capture
the essential DoF of human lower-body motion, enabling
intuitive and effective control while also providing a foun-
dation for high-level task planning.

Beyond supporting whole-body teleoperation of hu-
manoid robots, our HumanoidExo system is designed with
an independent data collection capability. Specifically,
it can perceive and record its own motion state in real
time—including displacement, orientation, and variations
in body height—without depending on external operator in-
put.

To realize this, we integrated a Mid-360 LiDAR on the
back of the exoskeleton and developed a LiDAR-odometry
module based on FAST-LIO[37] for real-time estimation of
the system’s spatial position and orientation. Compared
with approaches relying on vision or external localization
beacons, LiDAR odometry provides superior environmental
adaptability and robustness to lighting conditions. It main-
tains high localization accuracy even under drastic illumina-
tion changes or in texture-sparse environments. Moreover,
it eliminates the need for external infrastructure, thereby en-

abling truly independent operation and reliable data collec-
tion in open, unstructured, or entirely unknown in-the-wild
scenarios.

The specific mounting position and configuration of the
LiDAR are illustrated in Fig. 2 (left). The placement was
carefully designed to balance field of view, resilience to in-
terference, and overall motion stability of the system.

3.4. HE-VLA: A Whole-Body Humanoid Policy
Learning Method

This section introduces our method for learning a whole-
body humanoid policy from our collected exoskeleton data.
Our approach, namely HumanoidExo-VLA (HE-VLA in
short), consists of two key components: a pre-trained
Vision-Language-Action (VLA) model that learns foun-
dational whole-body motion control, and a reinforcement
learning method that ensures robust whole-body balance.

Vision-Language-Action Model. Given a set of expert
demonstrations that contain complex humanoid skill trajec-
tories, we want to learn a visuomotor policy π : O 7→
A that maps the visual observations o ∈ O to actions
a ∈ A, such that our robots not only reproduce the skill
but also generalize beyond the training data. To tackle
the challenge of manipulating complex humanoid skills,
we leverage DexVLA[35], a pre-trained vision-language-
action model, for the tasks described in our experiments.
Notably, the pre-training dataset for this foundation model
does not include data from the humanoid robot used in our
experiments, the Unitree G1. By leveraging a pre-trained
robot foundation model, we ensure its parameters are effec-
tively warmed up, facilitating an easier acquisition of com-
plex real-world skills. However, we observe that finetuning
the model alone does not guarantee stable whole-body con-
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Figure 4. The actor-critic reinforcement learning in HE-VLA.
This module works in conjunction with the primary VLA model,
guaranteeing the humanoid can reliably stand, squat, and walk dur-
ing policy inference.

trol. In fact, the fine-tuned model often causes the robot to
fall, failing to maintain whole-body stability due to instabil-
ity induced by dynamic upper-body motions. Therefore, we
introduce an improvement to address this critical problem.

Reinforcement Learning for Motion Balance. Relying
solely on imitation learning to directly output joint positions
for whole-body control introduces significant stability risks.
Minor deviations from the learned trajectories can result in
falls, posing a threat of catastrophic damage to the robot and
its environment. To overcome this limitation, we leverage
reinforcement learning to train a robust whole-body loco-
manipulation controller. This controller is responsible for
maintaining dynamic balance while executing commands

for base speed, yaw rate, and a target torso height.
Specifically, at each step, the policy receives ot =[

ct, ω
b
t , g

b
t , qt, q̇t, at−1

]
, and ct =

[
v∗x, ω

∗
z , h

∗], where
ωb

t and gb
t are base angular velocity and gravity in the torso

frame, and (qt, q̇t) are joint states. The action at speci-
fies desired lower-body joint targets qdes = q0 + at. Joint
torques are applied by a PD law

τi = kp,i
(
qdesi − qi

)
− kd,iq̇i,

driving locomotion while the upper-body joints follow the
operator directly.

To achieve stable walking with dynamic upper-body
movement, we use a curriculum that scales the admissible
joint range by a ratio r ∈ [0, 1]. This ratio increases as the
agent succeeds, smoothly expanding motion from static to
fully expressive. Commanded squats are realized through a
reward function that tracks a target base height and shapes
knee flexion accordingly. We train this by dedicating one-
third of our parallel environments to squatting and the rest to
walking, periodically switching their roles to learn seamless
transitions. Each transition is mirrored across the robot’s
x–z plane (swap left/right states and actions and flip the
yaw command), and both original and mirrored samples are
stored. Auxiliary actor/critic symmetry losses encourage
consistent predictions on mirrored pairs, improving sam-
ple efficiency and reducing unintended left–right bias. As
a result, the learned policy walks, turns, and squats to com-
manded heights while remaining stable under continuously
changing operator-driven upper-body poses.



3.5. Robot Configuration

Camera View. The visual data acquisition system is com-
posed of a primary head-mounted camera (Realsense D455)
and two supplementary wrist-mounted fisheye cameras,
which offer expanded perspectives during manipulation. To
mitigate the visual embodiment gap, we standardized the
hardware by using the same camera models on both the
exoskeleton and the robot. Furthermore, the field of view
(FoV) of the wrist cameras on the exoskeleton is carefully
calibrated to match that of the robot’s cameras.

We identified two primary challenges related to the head
camera. First, the Unitree G1 robot features a non-actuated
head, making it impossible to translate the human opera-
tor’s head movements into robot camera motion. Second,
a perfect positional correspondence between the exoskele-
ton’s and the robot’s head cameras is not achievable. Never-
theless, our empirical results demonstrate that these discrep-
ancies do not hinder policy learning; the model proves ca-
pable of extracting salient visual features even when trained
with the non-stationary head camera view from the human
demonstrator.

Robot Setup. Our experimental platform is the Unitree
G1, a humanoid robot with a height of 1.3m and 29 DoF
in its body. The robot is equipped with two Inspire-Hand
end-effectors. Each hand is an underactuated gripper with
12 DoF (six active and six passive). The thumb contains
two active and two passive DoFs, while each of the remain-
ing fingers has one active and one passive DoF. As a result,
the entire robotic system has a total of 41 active degrees of
freedom. Our policy model outputs target joint angles to
control the robot’s entire body.

4. Experiment

In the experiments section, we aim to answer the fol-
lowing questions to demonstrate the effectiveness of Hu-
manoidExo:

• How does the HumanoidExo system compare to state-of-
the-art policy learning methods?

• Does training with HumanoidExo data improve the pol-
icy’s robustness to environmental variations and physical
disturbances?

• Can HumanoidExo enable the learning of novel and com-
plex skills for humanoid robots?

• To what extent does exoskeleton data facilitate learning
skills that involve mobility and locomotion?

4.1. Task Descriptions & Implmeentation Details

As shown in Fig. 5, HumanoidExo performs on challeng-
ing whole-body humanoid manipulation tasks. We con-
ducted experiments on three tasks that represent different
categories of humanoid skills.

• PlaceToy: This is a tabletop manipulation task. The robot
is required to pick up a toy, whose position is randomized
on its left or right side, and place it into a tray at the center.
This task tests dexterity without requiring locomotion.

• Walk & PlaceToy: This task combines locomotion with
manipulation. The humanoid is required to walk to a ta-
ble, stop, and then place a toy into a tray at the center.

• PlaceLaundry: This is a whole-body manipulation task.
The humanoid must squat down, pick up an article of
clothing from a basket, place it into a washing machine
on its right, and then return to a standing position. The
primary challenge is maintaining balance during the dy-
namic squatting and standing motions.

We give examples for each task in Figure 5. For all ex-
periments, we fine-tune the model for 50k iterations with a
batch size of 128. We use a cosine learning rate scheduler
with an initial learning rate of 2e-5. All models and exper-
iments use the same set of hyperparameters to ensure fair
comparison.

4.2. Generalizable Manipulation with Hu-
manoidExo

The experiments in this section aim to measure the effi-
ciency of HumaniodExo data and the generalizability that
such data bring.

Fig. 6 summarizes the average success rates for the table-
top manipulation task across three experimental setups:
1) training with 200 real teleoperated demonstrations; 2)
mixed training with 5 teleoperated and 195 HumanoidExo
demonstrations; 3) training with only 5 teleoperated demon-
strations. This experiment aims to evaluate the model’s per-
formance under an extreme data-scarce scenario, where real
data constitutes just 2.5% of the mixed dataset.

The results reveal two key findings. First, HumanoidExo
data provides a significant performance boost when aug-
menting a small set of real demonstrations. For instance,
while training with only five teleoperated demonstrations
yields a mere 5% success rate, adding 195 HumanoidExo
demonstrations boosts the success rate dramatically to
about 80%. Second, for this in-domain task, the perfor-
mance achieved with the mixed dataset suggests that Hu-
manoidExo data has a utility comparable to that of real-
robot data. This is particularly significant because collect-
ing HumanoidExo data is substantially more cost-effective
and scalable than robot teleoperation, highlighting the prac-
tical value and efficiency of our method.

Object & Environment Generalization. A key metric
for evaluating a policy is its ability to generalize to novel
objects and unseen environments. To assess this, we con-
duct two generalization tests: one involving four objects not
present in the training data, and another in a completely new
environment with different objects (a novel toy and tray).

Across all generalization settings, we observe that
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Task 2: Walk & PlaceToy

Task 3: PlaceLaundry
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Figure 5. Examples for PlaceToy (Task 1), Walk & PlaceToy (Task 2), and PlaceLaundry (Task 3). We designed three tasks to
showcase the effectiveness of HumanoidExo in robot skill learning: Task 1 tests dexterity, Task 2 combines locomotion and manipulation,
with the mobile-manipulation data entirely collected by HumanoidExo, and Task 3 involves whole-body manipulation of the humanoid
robot.

a mixed training approach—combining teleoperated data
with HumanoidExo data—yields a higher average success
rate than training solely on teleoperated data. These find-
ings demonstrate the effectiveness of our proposed system
in improving policy generalization.

4.3. Exoskeleton Data Brings New Skill

Given that HumanoidExo data can serve as an effective sub-
stitute for teleoperated data, a natural question arises: can it
also be used to teach the robot entirely new skills?

To investigate this, we designed an experiment that
builds upon the previous tabletop manipulation setup. We
collected 195 new HumanoidExo demonstrations of a com-
pound task: walking to the table, stopping, and then execut-
ing the ’place toy’ action. The policy was then trained on
a mixed dataset containing these 195 new HumanoidExo
demonstrations and the same five teleoperated demonstra-
tions from the previous experiment. Crucially, these five
teleoperated demonstrations only contain the stationary ma-
nipulation portion of the task; they include no walking.
Therefore, any walking ability exhibited by the final policy
must be learned exclusively from the HumanoidExo data.
The task is shown in Figure 5.

For this combined task, the policy achieved a 100% suc-
cess rate on the walking portion in every trial. The robot
consistently navigated to the table and stopped in the cor-
rect position before initiating the manipulation phase. Con-
sequently, the overall task success rate is identical to that

of the stationary pick-and-place experiment. This result
demonstrates that our method successfully empowered the
robot with the new skill of walking without degrading its
previously learned manipulation capabilities. This promis-
ing phenomenon motivated us to conduct further tests on the
robustness and generalization of this newly acquired skill,
which was learned exclusively from HumanoidExo data.

Robustness to Disturbance. An interesting observation
from our experiments is the trained policy’s remarkable ro-
bustness to physical disturbances. As demonstrated in Fig-
ure 6(f), when we manually drag the Unitree G1 away from
its workspace, the policy consistently recovers by walking
the robot back to the table.

Notably, the model can recover even when displaced to
distances far exceeding any seen in the HumanoidExo train-
ing data. It successfully navigates back to its station in
front of the table before proceeding to complete the task.
This behavior suggests that training with HumanoidExo
data instills the policy with strong generalization capabil-
ities against significant real-world perturbations.

Generalization to New Environment. To evaluate gen-
eralization, we tested the policy in a new environment, as
demonstrated in the supplementary video. The robot was
then tasked with performing the same ”walk and place” rou-
tine. While we observed a slight decrease in the success
rate for the manipulation phase, the walking skill transferred
perfectly to this unseen setting. This result demonstrates the
strong generalization ability of the locomotion capabilities
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Figure 6. Model Generalization. (a) Model success rates. La-
bels A-E correspond to the robot’s success rate for grasping items
A-E shown in (c), and the number of trials for each experiment is
60. (b) Item placement locations for model testing. (c) Training
datasets. Out-of-domain data represents items that did not appear
in the Teleoperated Demonstrations but were present in the Hu-
manoidExo Demonstrations. (d)&(e) Tasks in new environment.
The robot’s success rate for completing the task is represented by
the label F in (a). (f) Robustness to disturbance. The robot could
autonomously walk back to the table and resume the tabletop task
(Task 2) after being forcibly moved away.

learned through our approach, even when the visual context
changes significantly.

4.4. HumanoidExo for Whole-Body Deterxous Ma-
nipulation

We conducted further experiments to test the whole-body
dexterous manipulation capabilities of our humanoid robot.
Specifically, we chose a ”Place Laundry” task, where the
robot is required to squat, grasp clothes from a basket, and
place them into a washing machine on its right. The robot
repeats this process until the basket is empty, then stands up
to signal task completion. This task presents several chal-
lenges: the clothes are deformable objects that are difficult
for dexterous hands to grasp and place entirely inside the
machine, which requires the model to exhibit recovery be-
haviors. Furthermore, the model must use robust visual ob-
servation while maintaining whole-body balance to avoid
falling during the upper-body task execution.

Following the methodology of the previous section, we

Table 1. Experimental Results for PlaceLaundry Task. The
results demonstrate that HumanoidExo data is a viable substitute
for teleoperated data, achieving comparable performance across
both in-domain and out-of-domain scenarios.

Teleoperated
Data

HumanoidExo
Data

Seen Cloth
Success Rate

Unseen Cloth
Success Rate

200 0 80% 80%
5 195 80% 75%
5 0 5% 5%

trained the HE-VLA model in three different configura-
tions: one with 200 teleoperated demonstrations, a sec-
ond with only 5 teleoperated demonstrations and 195 Hu-
manoidExo data points, and a third with only 5 teleop-
erated demonstrations. The results, presented in Table 1,
show that the model trained on 200 teleoperated demon-
strations performs similarly to our model, which used 195
HumanoidExo data points. These results demonstrate that
even for complex whole-body dexterous manipulation, our
method can be a strong replacement for teleoperated data
and can even be more effective for task generalization.

5. Conclusions
In this work, we addressed the critical data bottleneck that
hinders the development of capable, general-purpose hu-
manoid robots. While existing methods like simulation,
human videos, and direct teleoperation have advanced the
field, they suffer from significant limitations in scalabil-
ity, cost, and embodiment mismatch. We introduced Hu-
manoidExo, a lightweight, wearable exoskeleton system de-
signed to provide a practical and effective solution for scal-
able, whole-body data collection. Our experiments confirm
that this approach is highly effective. We’ve shown that data
from HumanoidExo enables policies to generalize to new
environments, achieve remarkable data efficiency by learn-
ing complex skills from as few as five real-robot demon-
strations, and even acquire entirely new skills like walking
without any prior robot data. These results validate our
system as a powerful paradigm for generating large-scale,
high-quality humanoid datasets
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